Serotonergic neurotoxic thioether metabolites of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy"): synthesis, isolation, and characterization of diastereoisomers.
نویسندگان
چکیده
3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is a synthetic recreational drug of abuse that produces long-term toxicity associated with the degeneration of serotonergic nerve terminals. In various animal models, direct administration of MDMA into the brain fails to reproduce the serotonergic neurotoxicity, implying a requirement for the systemic metabolism and bioactivation of MDMA. Catechol-thioether metabolites of MDMA, formed via oxidation of 3,4-dihydroxymethamphetamine and 3,4-dihydroxyamphetamine (HHMA and HHA) and subsequent conjugation with glutathione (GSH), are selective serotonergic neurotoxicants when administered directly into brain. Moreover, following systemic administration of MDMA, the thioether adducts are present in rat brain dialysate. MDMA contains a stereogenic center and is consumed as a racemate. Interestingly, different pharmacological properties have been attributed to the two enantiomers, (S)-MDMA being the most active in the central nervous system and responsible for the entactogenic effects, and most likely also for the neurodegeneration. The present study focused on the synthesis and stereochemical analysis of the neurotoxic MDMA thioether metabolites, 5-(glutathion-S-yl)-HHMA, 5-(N-acetylcystein-S-yl)-HHMA, 2,5-bis-(glutathion-S-yl)-HHMA, and 2,5-bis-(N-acetylcystein-S-yl)-HHMA. Both enzymatic and electrochemical syntheses were explored, and methodologies for analytical and semipreparative diastereoisomeric separation of MDMA thioether conjugates by HPLC-CEAS and HPLC-UV, respectively, were developed. Synthesis, diastereoisomeric separation, and unequivocal identification of the thioether conjugates of MDMA provide the chemical tools necessary for appropriate toxicological and metabolic studies on MDMA metabolites contributing to its neurotoxicity.
منابع مشابه
Neurotoxic thioether adducts of 3,4-methylenedioxymethamphetamine identified in human urine after ecstasy ingestion.
3,4-Methylenedioxymethamphetamine (MDMA, Ecstasy) is a widely misused synthetic amphetamine derivative and a serotonergic neurotoxicant in animal models and possibly humans. The underlying mechanism of neurotoxicity involves the formation of reactive oxygen species although their source remains unclear. It has been postulated that MDMA-induced neurotoxicity is mediated via the formation of bior...
متن کاملAccumulation of neurotoxic thioether metabolites of 3,4-(+/-)-methylenedioxymethamphetamine in rat brain.
The serotonergic neurotoxicity of 3,4-(+/-)-methylenedioxymethamphetamine (MDMA) appears dependent upon systemic metabolism because direct injection of MDMA into the brain fails to reproduce the neurotoxicity. MDMA is demethylenated to the catechol metabolite N-methyl-alpha-methyldopamine (N-Me-alpha-MeDA). Thioether (glutathione and N-acetylcysteine) metabolites of N-Me-alpha-MeDA are neurotox...
متن کامل[Biomimetic electrochemical synthesis of quinol-thioether conjugates: their implication in the serotonergic neurotoxicity of amphetamine derivatives].
Injection of 3,4-methylenedioxyamphetamine (MDA) or 3,4-methylenedioxymethylamphetamine (MDMA or ecstasy) directly into the brain fails to reproduce the long-term effects observed after peripheral administration, implying an essential role for systemic metabolites in the development of toxicity. However, the precise identity of the metabolites participating in MDA and MDMA-mediated serotonergic...
متن کاملGlial cell response to 3,4-(+/-)-methylenedioxymethamphetamine and its metabolites.
3,4-(±)-Methylenedioxymethamphetamine (MDMA) and 3,4-(±)-methylenedioxyamphetamine (MDA), a primary metabolite of MDMA, are phenylethylamine derivatives that cause serotonergic neurotoxicity. Although several phenylethylamine derivatives activate microglia, little is known about the effects of MDMA on glial cells, and evidence of MDMA-induced microglial activation remains ambiguous. We initiall...
متن کاملA single neurotoxic dose of MDMA decreases BDNF expression in the frontoparietal cortex but not in the hippocampus
Background The popular recreational abuse drug 3,4-methylenedioxymethamphetamine (MDMA, 'Ecstasy') produces acute and long-lasting deficits in several markers of the serotonergic (5-HT) system. BDNF (brain derived neurotrophic factor) is a prominent trophic factor of serotonergic fibers. The aim of this study was to characterize the damage of serotonergic fibers in the frontoparietal cortex and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical research in toxicology
دوره 21 12 شماره
صفحات -
تاریخ انتشار 2008